资源类型

期刊论文 533

会议视频 18

年份

2023 41

2022 46

2021 55

2020 28

2019 41

2018 34

2017 58

2016 32

2015 41

2014 27

2013 15

2012 14

2011 21

2010 35

2009 20

2008 9

2007 13

2006 5

2005 4

2003 1

展开 ︾

关键词

海上风电场 9

海上风电 5

能源 5

太阳能 4

可再生能源 3

钢结构 3

2021全球十大工程成就 2

2022全球十大工程成就 2

Cu(In 2

Ga)Se2 2

动力特性 2

可持续发展 2

台风 2

对策 2

强台风 2

微波散射计 2

海上风机 2

风力发电 2

风机安装 2

展开 ︾

检索范围:

排序: 展示方式:

Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west

O. D. OHIJEAGBON,Oluseyi. O AJAYI

《能源前沿(英文)》 2014年 第8卷 第2期   页码 145-159 doi: 10.1007/s11708-014-0304-z

摘要: An assessment of the potential and economic viability of standalone hybrid systems for an off-grid rural community of Sokoto, North-west Nigeria was conducted. A specific electric load profile was developed to suite the community consisting 200 homes, a school and a community health center. The data obtained from the Nigeria Meteorological Department, Oshodi, Lagos (daily mean wind speeds, and daily global solar radiation for 24 years from 1987 to 2010) were used. An assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 3 stand-alone applications of photovoltaic (PV), wind and diesel, and 3 hybrid designs of wind-PV, wind-diesel, and solar-diesel. The diesel standalone system (DSS) was taken as the basis of comparison as the experimental location has no connection to a distribution network. The HOMER® software optimizing tool was engaged following the feasibility analysis with the RETScreen software. The wind standalone system (WSS) was found to be the optimal means of producing renewable electricity in terms of life cycle cost as well as levelised cost of producing energy at $0.15/(kW·h). This is competitive with grid electricity, which is presently at a cost of approximately $0.09/(kW·h) and 410% better than the conventional DSS at a levelized cost of energy (LCOE) of $0.62/kWh. The WSS is proposed for communities around the study site.

关键词: photovoltaic (PV) power     wind power     solar-wind hybrid     cost per kilowatt-hour     clean energy    

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using

Aeidapu MAHESH, Kanwarjit Singh SANDHU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 139-151 doi: 10.1007/s11708-017-0484-4

摘要: In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery’s state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.

关键词: PV-wind-battery hybrid system     size optimization     genetic algorithm    

Analysis and characterization of wind-solar-constant torque spring hybridized model

Shantanu ACHARYA,Subhadeep BHATTACHARJEE

《能源前沿(英文)》 2014年 第8卷 第3期   页码 279-289 doi: 10.1007/s11708-014-0312-z

摘要: Solar and wind are the most promising renewable energy resources. But their unpredictable and varying nature prevents them from being used as the sole resource for power generation. This paper presents a model of wind and solar thermal hybrid power plant with a spring storage system which is expected to play an efficient role in combating with the drawbacks related to renewable power generation. In the proposed scheme, wind energy is harnessed by a hybrid vertical axis wind turbine, solar energy is utilized by a Stirling engine, and the surplus energy is stored in a winding spring. The paper discusses the working methodologies and analyses the performance of such 2.6 kW hybrid power plant model. It has been observed that the plant is capable of consistently generating 50% of its rated capacity irrespective of limitations in solar and wind resources.

关键词: hybrid vertical axis wind turbine     Stirling engine     solar-thermal energy     wind energy     constant torque spring    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 131-148 doi: 10.1007/s11708-017-0446-x

摘要: Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

关键词: photovoltaic     wind turbine     hybrid system     fuzzy logic controller     genetic algorithm     RBFNSM    

Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm

S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG

《能源前沿(英文)》 2016年 第10卷 第3期   页码 355-362 doi: 10.1007/s11708-016-0414-x

摘要: This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaic (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.

关键词: battery storage     electric vehicles (EVs)     microgrid (MG)     optimal scheduling     solar photovoltaic (PV) system     wind energy conversion system    

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

《能源前沿(英文)》 2019年 第13卷 第1期   页码 185-192 doi: 10.1007/s11708-017-0452-z

摘要: Solar absorption-subcooled compression hybrid refrigeration system is a new type of efficient and economical solar refrigeration device which always meets the demand of cooling load with the change of solar irradiance. The performance of the hybrid system is higher due to the improvement of evaporator temperature of absorption subsystem. But simultaneously, the variation of working process as well as performance is complicated since the absorption and compression subsystems are coupled strongly. Based on the measured meteorological data of Guangzhou, a subtropical city in south China, a corresponding parametric model has been developed for the hybrid refrigeration system, and a program written by Fortran has been used to analyze the performance of the hybrid system under different external conditions. As the condensation temperature ranges from 38°C to 50°C, the working time fraction of the absorption subsystem increases from 75% to 85%. Besides, the energy saving fraction also increases from 5.31% to 6.02%. The average COP of the absorption subsystem is improved from 0.366 to 0.407. However, when the temperature of the absorption increases from 36°C to 48°C, the average COP of hybrid system decreases from 2.703 to 2.312. Moreover, the working time fraction of the absorption subsystem decreases from 80% to 71.7%. The energy saving fraction falls from 5.67% to 5.08%. In addition, when the evaporate temperature increases from 4°C to 14°C, the average COP of the absorption subsystem decreases from 0.384 to 0.365. The work of the compressor decreases from 48.2 kW to 32.8 kW and the corresponding average COP of the absorption subsystem is improved from 2.591 to 3.082.

关键词: solar     absorption-subcooled     compression hybrid     dynamic simulation     performance analysis    

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 205-210 doi: 10.1007/s11708-009-0073-2

摘要: Owing to the stochastic characteristic of natural wind speed, the output fluctuation of wind farm has a negative impact on power grid when a large-scale wind farm is connected to a power grid. It is very difficult to overcome this impact only by wind farm itself. A novel power system called wind-gas turbine hybrid energy system was discussed, and the framework design of this hybrid energy system was presented in detail in this paper. The hybrid energy system combines wind farm with several small gas turbine power plants to form an integrated power station to provide a relatively firm output power. The small gas turbine power plant has such special advantages as fast start-up, shutdown, and quick load regulation to fit the requirement of the hybrid energy system. Therefore, the hybrid energy system uses the output from the small gas turbine power plants to compensate for the output fluctuation from the wind farm for the firm output from the whole power system. To put this hybrid energy system into practice, the framework must be designed first. The capacity of the wind farm is chosen according to the capacity and units of small gas turbine power plants, load requirement from power grid, and local wind energy resource distribution. Finally, a framework design case of hybrid energy system was suggested according to typical wind energy resource in Xinjiang Autonomous Region in China.

关键词: framework design     hybrid energy system     wind farm     gas turbine power plants    

Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case

Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI

《能源前沿(英文)》 2019年 第13卷 第3期   页码 539-550 doi: 10.1007/s11708-019-0635-x

摘要: Due to acute problems caused by fossil fuels that threaten the environment, conducting research on other types of energy carriers that are clean and renewable is of great importance. Since in the past few years hydrogen has been introduced as the future fuel, the aim of this study is to evaluate wind and solar energy potentials in prone areas of Iran by the Weibull distribution function (WDF) and the Angstrom-Prescott (AP) equation for hydrogen production. To this end, the meteorological data of solar radiation and wind speed recorded at 10 m height in the time interval of 3 h in a five-year period have been used. The findings indicate that Manjil and Zahedan with yearly wind and solar energy densities of 6004 (kWh/m ) and 2247 (kWh/m ), respectively, have the greatest amount of energy among the other cities. After examining three different types of commercial wind turbines and photovoltaic (PV) systems, it becomes clear that by utilizing one set of Gamesa G47 turbine, 91 kg/d of hydrogen, which provides energy for 91 car/week, can be produced in Manjil and will save about 1347 L of gasoline in the week. Besides, by installing one thousand sets of X21-345 PV systems in Zahedan, 20 kg/d of hydrogen, enough for 20 cars per week, can be generated and 296 L of gasoline can be saved. Finally, the RETScreen software is used to calculate the annual CO emission reduction after replacing gasoline with the produced hydrogen.

关键词: wind energy     solar energy     water electrolysis     hydrogen production     Weibull distribution function (WDF)     Angstrom-Prescott (AP) equation    

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

《能源前沿(英文)》 2020年 第14卷 第2期   页码 383-399 doi: 10.1007/s11708-017-0505-3

摘要: Prediction of solar radiation has drawn increasing attention in the recent years. This is because of the lack of solar radiation measurement stations. In the present work, 14 solar radiation models have been used to assess monthly global solar radiation on a horizontal surface as function of three parameters: extraterrestrial solar irradiance ( ), duration sunshine ( ) and daylight hours ( ). Since it has been observed that each model is adequate for some months of the year, one model cannot be used for the prediction of the whole year. Therefore, a smart hybrid system is proposed which selects, based on the intelligent rules, the most suitable prediction model of the 14 models listed in this study. For the test and evaluation of the proposed models, Tamanrasset city, which is located in the south of Algeria, is selected for this study. The meteorological data sets of five years (2000–2004) have been collected from the Algerian National Office of Meteorology (NOM), and two spatial databases. The results indicate that the new hybrid model is capable of predicting the monthly global solar radiation, which offers an excellent measuring accuracy of values ranging from 93% to 97% in this location.

关键词: global solar radiation     statistical indicator     hybrid model     spatial database     correlation coefficients    

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

《能源前沿(英文)》 2012年 第6卷 第1期   页码 12-20 doi: 10.1007/s11708-012-0172-3

摘要: An economic evaluation of a network of distributed energy resources (DERs) comprising a microgrid structure of power delivery system in an Indian scenario has been made. The mathematical analysis is based on the application of tuned genetic algorithm (TGA). The analyses for optimal power operation pertaining to minimum cost have been made for two cases in Indian power delivery system. The first case deals with the consumers’ individual optimal operation of DERs, while in the second one, consumers altogether form a microgrid with the optimal supply of power from DERs. The total annual costs for these two cases are found to be economically competitive and encouraging. A reduction of approximately 5.7% in the annual cost has been obtained in the case of microgid system than that in the separately operating consumers’ system for a small locality of India. It is observed that the application of TGA results in a reduction of the minimum cost depicting an improved outcome in terms of energy economy.

关键词: distributed energy resources (DERs)     microgrid     tuned genetic algorithm (TGA)    

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

《能源前沿(英文)》 2015年 第9卷 第3期   页码 259-271 doi: 10.1007/s11708-015-0367-5

摘要: In most isolated sites situated in south Algeria, the diesel generators are the major source of electrical energy. Indeed, the power supply of these remote regions still poses order problems (technical, economical and ecological). The electricity produced with the help of diesel generators is very expensive and responsible for CO emission. These isolated sites have significant wind energy potential. Hence, the use of twinning wind-diesel is widely recommended, especially to reduce operating deficits. The objective of this paper is to study the global modeling of a hybrid system which compounds wind turbine generator, diesel generator and storage system. This model is based on the control strategy to optimize the functioning of the hybrid system and to consolidate the gains to provide proper management of energy sources (wind, diesel, battery) depending on the load curve of the proposed site. The management is controlled by a controller which ensures the opening/closing of different power switches according to meteorological conditions (wind speed, air mass, temperature, etc).

关键词: wind-diesel     storage system     isolated site     management     simulation    

A comprehensive review and analysis of solar forecasting techniques

Pardeep SINGLA, Manoj DUHAN, Sumit SAROHA

《能源前沿(英文)》 2022年 第16卷 第2期   页码 187-223 doi: 10.1007/s11708-021-0722-7

摘要: In the last two decades, renewable energy has been paid immeasurable attention to toward the attainment of electricity requirements for domestic, industrial, and agriculture sectors. Solar forecasting plays a vital role in smooth operation, scheduling, and balancing of electricity production by standalone PV plants as well as grid interconnected solar PV plants. Numerous models and techniques have been developed in short, mid and long-term solar forecasting. This paper analyzes some of the potential solar forecasting models based on various methodologies discussed in literature, by mainly focusing on investigating the influence of meteorological variables, time horizon, climatic zone, pre-processing techniques, air pollution, and sample size on the complexity and accuracy of the model. To make the paper reader-friendly, it presents all-important parameters and findings of the models revealed from different studies in a tabular mode having the year of publication, time resolution, input parameters, forecasted parameters, error metrics, and performance. The literature studied showed that ANN-based models outperform the others due to their nonlinear complex problem-solving capabilities. Their accuracy can be further improved by hybridization of the two models or by performing pre-processing on the input data. Besides, it also discusses the diverse key constituents that affect the accuracy of a model. It has been observed that the proper selection of training and testing period along with the correlated dependent variables also enhances the accuracy of the model.

关键词: forecasting techniques     hybrid models     neural network     solar forecasting     error metric     support vector machine (SVM)    

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 420-426 doi: 10.1007/s11465-017-0439-9

摘要:

A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

关键词: wind power     brushless electrically excited synchronous generator     hybrid rotor     equivalent circuit    

Renewable power for China: Past, present, and future

Eric MARTINOT

《能源前沿(英文)》 2010年 第4卷 第3期   页码 287-294 doi: 10.1007/s11708-010-0120-z

摘要: This paper briefly examines the history, status, policy situation, development issues, and prospects for key renewable power technologies in China. The country has become a global leader in wind turbine and solar photovoltaic (PV) production, and leads the world in total power capacity from renewable energy. Policy frameworks have matured and evolved since the landmark 2005 Renewable Energy Law, updated in 2009. China’s 2020 renewable energy target is similar to that of the EU. However, China continues to face many challenges in technology development, grid-integration, and policy frameworks. These include training, research and development, wind turbine operating experience and performance, transmission constraints, grid interconnection time lags, resource assessments, power grid integration on large scales, and continued policy development and adjustment. Wind and solar PV targets for 2020 will likely be satisfied early, although domestic demand for solar PV remains weak and the pathways toward incorporating distributed and building-integrated solar PV are uncertain. Prospects for biomass power are limited by resource constraints. Other technologies such as concentrating solar thermal power, ocean energy, and electricity storage require greater attention.

关键词: renewable energy     wind power     solar power     sustainable energy policy     green industry    

标题 作者 时间 类型 操作

Potential and economic viability of standalone hybrid systems for a rural community of Sokoto, North-west

O. D. OHIJEAGBON,Oluseyi. O AJAYI

期刊论文

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using

Aeidapu MAHESH, Kanwarjit Singh SANDHU

期刊论文

Analysis and characterization of wind-solar-constant torque spring hybridized model

Shantanu ACHARYA,Subhadeep BHATTACHARJEE

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system andRBFNSM for wind turbine in the grid connected mode

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

期刊论文

Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm

S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG

期刊论文

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

期刊论文

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

期刊论文

Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case

Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI

期刊论文

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

期刊论文

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

期刊论文

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

期刊论文

A comprehensive review and analysis of solar forecasting techniques

Pardeep SINGLA, Manoj DUHAN, Sumit SAROHA

期刊论文

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

期刊论文

Renewable power for China: Past, present, and future

Eric MARTINOT

期刊论文